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Background
 Numerous studies have looked at relationship between lightning and 

tropical cyclone (TC) intensity & intensity change

 Intuitive connection:  Inner core lightning  deep convective activity 
intensification

 Relationship is complicated due to other influences on TC lightning, such 
as vertical shear, sea surface temperatures, land interactions, etc. 

 E.g., TCs experiencing moderate to strong vertical shear often have increased 
lightning activity in inner core (DeMaria et al. 2012)

 Lightning-based predictors have been tested in the statistical Rapid 
Intensification Index through GOES-R Proving Ground

 Inner core lightning density, r=0-200km, negative coefficient

 Outer region lightning density, r=200-400km, positive coefficient
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Motivation
 Shortfalls of TC lightning data

 Ground-based networks have low detection efficiencies over oceans

 TRMM LIS provides “snapshots” – lacks temporal resolution needed

 With launch of GOES-16, a new source of lightning data will be 

available via Geostationary Lightning Mapper (GLM)

 Near-continuous measurement of total lightning over large domain 

(including TC regions)

 70-90% detection rates

 Main goal of this project has been to investigate potential 

relationships between total GLM-proxy lightning data and TC 

intensity change 

1/26/1797th AMS Annual Meeting, Seattle, WA 3



Data
 Earth Networks Total Lightning Network (ENTLN) flashes

 Provided by Earth Network, Inc.

 Global flashes, 2011-2014

 World Wide Lightning Location Network (WWLLN) flashes

 Global flashes, 2005-2014

 Provided by University of Washington 

 Network detection efficiencies

 Performance data with respect to TRMM/LIS on 2° resolution western hemisphere grids for 
both WWLLN and ENTLN (S. Rudlosky)

 Atlantic Best Tracks (ftp.nhc.noaa.gov/atcf/)

 TC location and intensity every 6 hours

 Storm-centered variables from SHIPS diagnostic files
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Storm-relative cylindrical coordinates

For this study, azimuthal average 
lightning density 

(flashes km-2 year-1) 
in the inner core and outer regions 

are examined

TC center positions are obtained 
from the HURDAT

Inner Core  r = 0-200 km

Outer region r = 200-400 km

Chose radii to be consistent with 
lightning-based predictors used in 

statistical rapid intensification index

1/26/1797th AMS Annual Meeting, Seattle, WA 5



Detection efficiency
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DE ~10-30% throughout domain

Relatively spatially uniform

Previous studies have accounted for 
temporal variability only (e.g., DeMaria et 

al. 2012)

DE ~0.1-90% throughout domain

Larger reported IC flash detection

Large spatial variability

Must account for both spatial and temporal 
variability in DE

*Detection efficiencies provided by Dr. Scott Rudlosky



Statistical Comparisons

 WWLLN and ENTLN flash counts are expected to be 
comparable over much of the tropical Atlantic ocean

 Preliminary analyses attempted to apply a temporal bias 
correction to ENTLN data, as had been used in DeMaria et 
al. 2012

 Neglecting the spatial variability of ENTLN DE, especially 
near the U.S. coast, introduced a substantial bias to this 
previous work

 This study applies a bias correction based on annual DE 
values, which accounts for both temporal and spatial biases
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DE-based bias correction
Atlantic TCs, 2011-2012
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Inner core lightning & intensity change
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Outer region lightning & intensity change
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Inner core lightning, 
shear-relative quadrants

 Lightning activity highest in downshear quadrants

 Lightning enhanced in downshear-left quadrants for weakening 
TCs 

 Deep convection tends to be focused in the downshear-left quadrant 
in the presence of significant deep-layer vertical wind shear

 Vertical shear often leads to weakening
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Outer region lightning,
shear-relative quadrants

 Lightning activity highest in downshear quadrants for 
weakening TCs (once again, signal consistent with shear)

 Lightning activity greater in the downshear-right quadrant 
for intensifying TCs (?)
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Rapid Intensification Index (RII)
 Uses subset of SHIPS predictors related to RI

 Input to a discriminant analysis algorithm

 Provides probability of RI (25 kt, 30 kt, 35 kt, 40 kt) in next 24 hr

 Testing inner core and outer region lightning density as predictors (GOES-R PG)

PREDICTOR DEFINITION

PER Previous 12-h intensity change (kt)

SHDC 850-200 mb vertical shear (kt)

TBSTDo Standard deviation of IR brightness temperature

RHLO 850-700 mb relative humidity (%)

POT = MPI-Vmax Maximum Potential Intensity – Current Intensity (kt)

OHC Oceanic heat content (kJ cm-2)

D200 Upper-level divergence (10**7s-1)

PC30 Percentage of GOES pixels colder than -30oC

TWAT 0-600 km avg sym vT at 850 hPa, NCEP analysis (m/sec *10)
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WWLLN vs. ENTLN in the RII
2011-2014 Atlantic TCs
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VAR No Lightning WWLLN ENTLN

CONST 7.376 7.062 7.09

POT 0.112 0.172 0.188

SHDC -0.284 -0.254 -0.234

D200 -0.666 -0.715 -0.753

PER 0.536 0.542 0.554

PC30 -0.13 -0.014 0.008

TBSTDo -0.468 -0.396 -0.404

OHC 0.595 0.578 0.549

RHLO -1.086 -1.109 -1.122

TWAT 0.901 0.866 0.874

LM02 -0.327 -0.405

LM24 0.262 0.395

Brier Skill Score 14.0 15.7 15.9



Summary / Future Work

 Given expected similarities between WWLLN and ENTLN 
over our domain of interest, not surprising our statistical 
analysis has not yielded any major differences in 
lightning/TC relationship

 Currently using statistical analysis to identify case studies 
where ENTLN and WWLLN are significantly different (most 
likely where ENTLN DE is higher)

 Using downshear left inner core lightning density may 
improve current lightning-based RII (developing prototype 
for testing in 2017)

 Can explore with real GLM data soon! 
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 Many thanks to…

 World Wide Lightning Location Networks - Univeristy of Washington 
(http://wwlln.net/)

 Earth Networks, Inc. (https://www.earthnetworks.com/)

 Dr. Scott Rudlosky, NOAA/NESDIS/STAR
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